

ELIZADE UNIVERSITY, ILARA-MOKIN, ONDO STATE FACULTY OF ENGINEERING DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

FIRST SEMESTER EXAMINATION, 2019/2020 ACADEMIC SESSION COURSE TITLE: COMMUNICATION PRINCIPLES

COURSE CODE: EEE 411

EXAMINATION DATE: 24th of March, 2021

COURSE LECTURER: Dr. Adedeji K. and Mr Olla M. O

HOD's SIGNATURE

TIME ALLOWED: 3 HOURS

INSTRUCTIONS:

1. ANSWER OF LIVE OF THE QUESTIONS

- 2. SEVERE PENALTIES APPLY FOR MISCONDUCT, CHEATING, POSSESSION OF UNAUTHORIZED MATERIALS DURING EXAM.
- 3. YOU ARE **NOT** ALLOWED TO BORROW ANY WRITING MATERIALS DURING THE EXAMINATION.

Question 1 (15 marks)

- (a) From the first principle, show that for a single-tone FM, the FM wave is represented as $S(t) = E_c cos \left[2w_c t + m_t \sin w_m t \right]$
- (b) With the aid of appropriate diagram, briefly discuss reactance FM modulator.

Question 2 (15 marks)

(a) Show that the total power of amplitude modulated signal is:

$$P_{\tau} = P_{c} \left(1 + \frac{m^2}{2} \right)$$

- (b) For a modulation coefficient of 0.4 and carrier power of 400 W, calculate
 - (i) Total sideband power (ii) Transmitted power
- (c) Define Nyquist rate and Nyquist interval

Question 3 (15 marks)

- (a) An audio signal given by $15\cos 2\pi (200t)$ amplitude modulates a sinusoidal carrier wave $60\cos 2\pi (100000t)$, determine
 - (i) Modulating index (ii) Percentage Modulation
- (b) List five advantages of Optical fiber over copper in channel of communication.
- (c) Find the Nyquist rate and Nyquist interval for the signal

$$X(t) = \frac{1}{2\pi} \cos(4000\pi t) \cos(1000\pi t)$$

Question 4 (15 marks)

- (i) Using circuit diagram only, differentiate between pre-emphasis and de-emphasis.
- (ii) A single-tone FM wave is represented by the following equation $v = 40\cos[50000t + \sin 3000t]$ volts. What type of FM is this? Also, estimate
- (a) The carrier and the modulating frequencies
- (b) The maximum deviation
- (c) The bandwidth of the FM signal using Carson's rule.

Question 5 (15 marks)

(a) State sampling theorem in time domain

(b) A bandlimited signal x(t) of **figure 1** is sampled by a train of rectangular pulses of period T. (i) Find an expression for the sampled signal (ii) Sketch the spectrum of the sampled signal

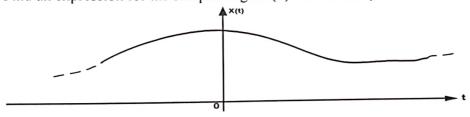


Figure 1

Question 6 (15 marks)

(i) With the aid of a labelled diagram, discuss the operation of a phase locked loop FM Detector.

(ii) Use diagram(s) to show how a diode clipper can be used to clip the positive and negative part of the analog wave form shown in **Figure. 2.** Also, sketch the resulting waveform after clipping.

Figure 2

Question 7 (15 marks)

(a) State three requirements of FM detector and two applications of angle modulation.

(b) Explain the following terms: (i) Attenuation (ii) Ionospheric scintillation (iii) Rain rate

(c) A system is supplied with an input power of 1mW giving out an output power of $100\mu W$. Find the total power loss by the system.